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. . .in hydrodynamic turbulence. . . the fate of vortices extending in the direction of 
motion is of great importance (J. M. Burgers 1948). 

We examine an elementary model of the dynamics of streamwise vorticity in a plane 
mixing layer. We assume that the vorticity is unidirectional and subjected to a 
two-dimensional spatially uniform strain, positive along the direction of vorticity. 
The equations of motion are solved numerically with initial conditions corresponding 
to a strain-viscous-diffusion balance for a layer with a sinusoidal variation of 
vorticity. The numerical results are interpreted physically and compared to those of 
an asymptotic analysis of the same problem by Neu. It is found that strained vortex 
sheets are fundamentally unstable unless their local strength nowhere exceeds a 
constant (somewhat larger than 2) times the square root of the product of strain 
and viscosity. The instability manifests itself by the spanwise redistribution of the 
vorticity towards the regions of maximum strength. This is accompanied by the local 
rotation of the layer and the intensification of the vorticity. The end result of this 
evolution is a set of discrete round vortices whose structure is well approximated by 
that of axially symmetric vortices in an axially symmetric strain. The phenomenon 
can proceed (possibly simultaneously) on two separate lengthscales and with two 
correspondingly different timescales. The first lengthscale is the initial spanwise 
extent of vorticity of a given sign. The second, relevant to initially thin and spanwise 
slowly varying vortex layers, is proportional to the layer thickness. The two types 
of vorticity focusing or collapse are studied separately. The effect of the first on the 
diffusion rate of a scalar across the layer is calculated. The second is examined in detail 
for a spanwise-uniform layer : First we solve the eigenvalue problem for infinitesimal 
perturbations and then use the eigenfunctions as initial conditions for a numerical 
finite-differences solution. We find that the initial instability is similar to that of 
unstrained layers, in that roll-up and pairings also follow. However, a t  each stage 
a strainaiffusion balance eventually imposes the same cross-sectional lengthscale 
and each of these events leads to an intensification of the local value of the vorticity. 

The parameters upon which collapse and its timescale depend are related to those 
which are known to govern a mixing layer. The results suggest that the conditions 
for collapse of strained vortex sheets into concentrated round vortices are easily met 
in a mixing layer, even a t  low Reynolds numbers, so that these structures whose size 
is the Taylor microscale are far more plausibly typical than are vortex sheets on that 
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scale. We found that they raise significantly the diffusion rate of scalar attributes 
by enhancing the rate of growth of material surfaces across which diffusion takes 
place. Finally, experimental methods that rely on the visualization of the gradient 
of scalar concentration are shown to be unable to reveal the presence of streamwise 
vorticity unless that  vorticity has already gathered into concentrated vortex tubes. 

1. Introduction 
I n  Part  2 (Corcos & Lin 1984) we have given an account of the origin of 

three-dimensional components of the motion in a free shear layer which develops in 
time, a T-layer. According to our model, a developing and pairing two-dimensional 
layer fosters the growth of initially small three-dimensional perturbations so that the 
vortJicity whose initial dominant direction is spanwise acquires a component normal 
to the span, the 'streamwise' vorticity w". The spanwise component is also modified 
by the new motion. Nevertheless the important features of the two-dimensional flow 
studied in Part 1 (Corcos & Sherman 1984) survive. We discovered in particular how 
the characteristic patterns of strain and of spanwise vorticity of the base flow 
constrain the new motion. According to our model equations, while the spanwise 
vorticity of the base flow soon migrates into a row of distinct vortices separated by 
regions which are almost totally depleted of spanwise vorticity, w" is found in a 
continuous layer. Between primary spanwise vortices, this layer has a simple 
structure: w" lies along the layer and the circulation associated with it does not 
continue to  increase with time. On the other hand, within the primary spanwise 
vortices, the streamwise vorticity layer is folded (several times during pairing), the 
direction of w" varies and a three-dimensional instability continues to feed it, though 
not monotonically in time. 

In  our model, the spanwise distribution of this vorticity was sinusoidal, with 
wavelength A, = 27r//3. This unrealistic feature is merely a consequence of the 
linearization of the model equation for the three-dimensional part u of the velocity 
vector I/ = U+ u,  and of the chosen initial conditions. It is of course possible, as Riley 
& Metcalfe (1980), Cain, Reynolds & Ferziger (1981), Cou6t & Leonard (1980) and 
Brachet & Orszag (1982) have done, to carry out the numerical solution of a discrete 
approximation to the fully nonlinear three-dimensional problem. But we fear that  
the interpretation of the numerical results of such computations is made difficult by 
what amounts to the superposition of several different dynamical events. One of 
these is the instability that fuels the three-dimensional motion, the subject of Part 
2; another is the evolution of the newly created vorticity in the presence of an imposed 
field of strain. The latter problem, which has received comparatively little attention, 
is quite complex in all its generality and can profitably be examined first by itself 
and in a context which is admittedly restrictive, but which allows sharper 
characterization. The goal is to  comprehend new elementary prototypes of motion 
relevant to  the mixing layer, as well as to other turbulent flows. 

2. Themodel 
Assume an initial unidirectional vorticity distribution 

subjected to a plane strain field 
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FIGURE 1. The model: unidirectional vorticity in a plane strain. 

where 8, and 2, are unit vectors in the x- and z-directions and y ( t )  is a prescribed 
strain rate, which remains independent of x, y and z .  This geometrically simple model 
sketched in figure 1 is a good approximation (see Part 2 )  to  the local flow along the 
braids and provides the most elementary form of an interesting problem: what 
distribution of vorticity results when vortices are subjected to  mutual and self- 
induction as well as to strain along their axes and to  viscous diffusion ‘1 The model 
allows in particular solutions in which the velocity components u and w normal to 
the direction of the vorticity remain independent of x if they are so initially. Thus 
the continuity and momentum equations reduce to 

(2.2a) 

(2.26) 

(2.2c) 

The velocity vector is V = 8, yx + 2, v + 2, w. The asymptotic values of Y and w are 

v+O, w+-yz for z+-+oo. 

An initially x-independent distribution of the passive scalar with asymptotic 
values, 

p-+TiAp as z - t f m ,  

will also remain x-independent and is governed by 

-+u-+w-= aP aP aP D(!$+g) ,  
at ay aZ 

where D is the molecular diffusivity coefficient for p. 
The vorticity equation for our model flow is 

(2 .2d)  

(2.3) 

where w = 65- yz. Its only known exact solution represents a vortex layer, uniform 
in the spanwise direction. It is therefore inappropriate for a shear layer across which 
the total circulation in any ( y ,  2)-plane vanishes. 
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2.1. Weak vortices 

Suppose that a row of weak alternating vortices is initially represented by 

w1 = w 0 ( z / S , )  cospy, 

where w1 is negligible for Jz1 > 8,. If we define r as the circulation round one of the 
vortices along a rectangular circuit of sides $Ay = 7c/p and 2S1, we find that the right- 
hand terms of (2.3) are negligible compared with the strain-related transport and 
stretching terms on the left provided that 

Thus if the inequality (2.4) is satisfied, the vorticity equation can be approximated 
by the linearized equation? 

at yz-= az  yw,+v (;;'.I - +%) a@, awl -- 

Equation (2 .5)  has a similarity solution of the form 

@1 = Q O N  w ( 7 )  COSPY,  

where 7 = z /S ( t ) ,  with boundary condition 

w+O as Iql-.co. 

This solution is 

and, provided that w+O faster than l7l-l as Iql becomes large, 

w = exp ( -$q2) .  

The circulation around a single vortex is given by 

(2.6,) 

(2.6b) 

( 2 . 6 ~ )  

(2.6d) 

r = f 2hy n- lS(0)  QO(O) exp ( -P2vt). (2.6e) 

Solution (2.6) describes a simple accommodation of streamwise vorticity to the 
competing effects of strain and diffusion. 

(i) The circulation and the maximum vorticity both decay in a time of order (/3zv)-1 
as a result of spanwise diffusion of vorticity of alternating sign. This decay rate is 
slow in units of y-l if y /p27  $ 1. 

(ii) The thickness S of the vorticity layer is the same as that found in Part 1 for 
the spanwise vorticity layer near stagnation points. There the rates of change of y 
are such that S frequently approaches its asymptotic value 6, = (nv/2y) i .  

(iii) For a constant value of y ,  the vortex aspect ratio reaches the asymptotic value 

t The argument leaves open the possibility that the small terms left out are destabilizing, i.e. 
that the solution of the complete vorticity equation departs progressively from that of (2 .5 ) .  This 
is discussed in $4 and by Neu (19846). 
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in a time of order y-l  [Sz(0)/Si- 114. If we identify y as the strain created by the main 
spanwise vortices, say a t  the stagnation points, assign the typical value 3U/ l  (see 
Part I )  to  this strain and further assume A, x ( A , ) O  x 156, as suggested by observation 
(Breidenthal 1981), where I is the spacing between spanwise vortices, (A,)O is the 
wavelength of the initial-layer two-dimensional instability and Si is the initial-layer 
thickness (which can be equated to S(0) above), 

A ,  x 5.2(Si/Z)i Ref, 

where Rei = USJv is the initial Reynolds number of the layer. For instance a t  the 
end of the first roll-up, 1 = (A,)O and 

A, x 1.5Ret 

According to our linearized solutions, the counter-rotating vortex cells are thus in 
general flattened and elongated along the span. But each time spanwise vortices pair, 
1 doubles, y is decreased by half and the aspect ratio decreases by the factor 2i. 

The velocity components v and 65 associated with the streamwise vorticity are 
evidently of the form 

= Qo(t)j,(t, z )  cos PY > 

65 = Q o ( t ) f &  2) sinpy, 
with 

and 

G(z)  = exp (Pz )  erfc -2-- . (;; Z) 

( 2 . 8 ~ )  

(2.8b) 

( 2 . 8 ~ )  

( 2 . 8 d )  

If the Reynolds number is such that A, + 1, the velocity components v and 65 decay 
slowly with z, i.e. on the scale of n/p outside the vorticity layer. I n  this case the 
vortices are essentially spanwise shear layers with a spanwise periodic variation of 
shear. 

2.2 .  The general case 

The solution above decays progressively while i t  remains self-similar. But the layer 
may in fact have an entirely different evolution. We ask the following questions. 

(i) When A,+m, (2.6) tends to  the exact solution of the full equations for an 
infinite strained vortex sheet. For large times this solution becomes stationary if y is 
constant, but is i t  stable ?1 

(ii) When A, is finite, can the terms omitted in the linearization alter fundamentally 
the approximate balance between stretching and diffusion described by the similarity 
solution ? 

These two seemingly distinct questions are the two sides of the same coin. They 
both involve the evolution of vorticity strained both externally and by self-induction. 
We shall see that, for a sufficiently large aspect ratio and a sufficiently strong 
circulation, both departtares from the similarity solution do occur side by side. But 
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(b)  

FIGURE 2. Sketch of the vorticity distribution: (a) according to the similarity solution (weak 
circulation) ; (6) showing the effect of strong circulation. 

the time- and Iengthscales that characterize these two types of evolution are different, 
so that, for computational as well as heuristic reasons, we shall examine them 
separately. Section 3 focuses on the large-scale features of the competition between 
external strain, diffusion and induction, while $4 examines the stability of the 
uniform-layer solution taken as a model of counter-rotating vortices of large aspect 
ratio. Section 5 discusses both in the context of the mixing layer. 

3. The evolution of strained counter-rotating streamwise vortices 
A sketch of a pair of stretched vortices of alternating circulation suggests how 

self-induction tends to  modify the elementary solution of $ 2.1. Figure 2 ( a )  shows 
contours of constant vorticity in the (y, 2)-plane according to that solution. I n  figure 
2 ( b ) ,  where the circulation is finite, the vortex centres remain on the plane z = 0, since 
by symmetry the velocity induced there by the vorticity of an infinite row vanishes. 
Elsewhere, the induced velocity tends to rotate the flattened vortices around the 
centres while the strain opposes this rotation with the vertical velocity -yz. A 
balance would be possible were i t  not for the fact that  the induced velocity has a 
component along the span y. Along the spine of the vorticity contours, at point A 
(near the centre of the vortex) that  velocity should be approximately normal to the 
spine as it is for the Kirchhoff ellipse (see Lamb 1932 and $4.4), while at point B, 
i.e. close to a neighbouring vortex, i t  should be more nearly vertical. The sum of the 
induced velocity and of the z-component of the strain velocity is thus a vector directed 
approximately towards the vortex centre along the spine. Accordingly, in the absence 
of viscous diffusion, we might expect the vortices to become foreshortened. 

3.1. Numerical solutions 

We shall now illustrate the nonlinear evolution of counter-rotating vortices strained 
along their axes with finite-differences solutions of (2.2). These are first non- 
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dimensionalized by using A, as the lengthscale and y- l  as the timescale. The pressure 
scale is p,ht y2. Henceforth y and z are non-dimensional coordinates and 7 is 
non-dimensional time. The subscript of A, is now omitted. I n  the absence of vorticity, 
the equations reduce to 

The boundary conditions are 
v = 0, w = - 2 .  

v+O, w+-z as z + + _ c o .  

w(0,z) = v(1,  z ) ,  w (0 , z )  = W f l ,  2 ) .  

The initial conditions chosen are the asymptotic forms of the similarity solutions (2.6) 
with y = constant. Thus 

v ( Y , z , O )  = E c o s ~ ~ ~ [ H ( z , T ) - H ( - z , T ) ] ,  

w(y,z ,O) = Es in2ny[H(z ,~ ) -H( -z ,~ ) ] -yz ,  

and r* is defined by (3.1). 

Parameters 
There are two parameters, the non-dimensional circulation 

and the aspect ratio, i.e. the ratio of the spanwise spacing of the vortices to their initial 
thickness 

'C2Y h 
A --= (87r-2 - . 

- 4 4  

I n  most of the calculations y is held constant, while in a few cases y is varied in time 
so as to simulate the typical evolution of the strain a t  the stagnation point of a mixing 
layer as a result of successive pairings. 

3.2. The Jinite-differences scheme 

This scheme is an adaptation to the present problem of 'program KHINT ', which was 
initially developed by Patnaik (Patnaik, Sherman & Corcos 1976), and then modified 
and fully documented by Sherman (1981). The computational domain is bounded by 
0 < y < 1 and by -zo < z < z,, where 0.45 < zo < 0.90. Mesh size for y = & and for 
z varied from 2z0/64 to 22,1132, depending on the estimated typical value of the 
vorticity-layer thickness. 

3.3. A few typical cases 
We start with a case for which T* = 0.08 and A ,  = 3.75 (figure 3a-c). The two 
adjacent vortices of opposite circulation rotate rapidly until T = yt x 1,  when there 
is an approximate balance between the z component of the velocity induced by the 
vortices and the z-component - yz of the imposed strain velocity. During the same 
time, the value of vorticity decreases somewhat while the vortices first lengthen, and 
their thickness starts to increase. For the rest of the calculation (1 < 7 < 3.0) the 
vortices shorten and the vorticity decreases (although little a t  their centres). At the 
end of the run, the circulation has decreased to 0.83 times its initial value, while, 
according to the similarity solution (2.6), r/r, = exp ( - -m/ZA,)  = 0.68. Thus, while 
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FIGURE 3. Vorticity contours: f* = 0.08, A, = 3.75; (a )  7 = 1.0; ( b )  2.0; (c) 3.0. 

the vortices interdiffuse as in the linear solution, diffusion is less effective here because 
the inward component of induced vorticity opposes this diffusive flux, especially near 
the centres of the vortices. Nevertheless, their evolution during the time of the 
calculation is qualitatively similar to that described in the linear solution. The 
evolution for later times can be surmised : Because the vortices gradually lose their 
circulation, their tilt with respect to the x-axis decreases. This trend is already 

(a) 

FIGURE 4. Vorticity contours: r* = 0.32, A ,  = 7.95: ( a )  7 = 0;  (b )  0.5; (c) 1.0; ( d )  1.5 
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FIGURE 5. 0, vorticity at the vortex centres; 0, tilt angles of vortices near centre 
as functions of time. r* = 0.32, A ,  = 7.95. 

noticeable a t  7 = 3.5. As a result, the advective flux of vorticity towards the vortex 
centres decreases, the vortex length increases again as a result of diffusion, and the 
vorticity distribution approaches asymptotically that of the initial state as i t  
continues to decay. 

Thus, for the case above (thick vortices, weak circulation), the effect of self- 
induction amounts only to a temporary and mild departure from the evolution 
given by the similarity solution. 

A different, history is apparent if the viscosity is decreased by a factor of about 
4 and the circulation is increased by 4. This is shown on figure 4(a, d ) ,  where 
A ,  = 7.95, P = 0.32. First, the thinner vortices bend noticeably as they tilt in that 
the tilt angle is larger near the vortex centres than towards the tips. Then i t  seems 
as though the central part of the vortices and the tips have a different, indeed, an 
opposite evolution: the central part swells, shortens and rotates steadily (fig. 5 )  while 
the tips thin out, elongate and lose their tilt. The value of the vorticity rises a t  the 
centre and a t  7 = 1.5 the vortex is almost round, except for the remnants of its tip, 
which appear to rotate with the vortices and which are about to disappear. The end 
state in this case can also be plausibly imagined. 

Since the vortices are now more concentrated and have lost only a small fraction 
of their circulation (figure 6), they will rotate and shrink until radial diffusion balances 
the average inward advection due to the strain. Induction due to the pair of 
neighbouring vortices and the rest of the row will be ineffective because the ratio of 
vortex radius to vortex spacing is now small. For the same reason, spanwise diffusion 
will be greatly decreased. More specific details of the asymptotic state are given in 

Departures from the similarity solution are entirely due to the vorticity-induced 
advection. If only diffusion is able to combat the focusing effect of that advection, 
collapse of the vortices should result for a given value of A ,  for sufficiently large 
values of r*, and equally, with a given value of r*, for sufficiently large values of 
A,. However, collapse will look different as A ,  is varied: since the asymptotic radius 
of the collapsed vortex should be of the order of its initial thickness (see §3.5) ,  the 

$3.5. 
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FIGURE 6. The decay of circulation with time: 0, according to the similarity solution; 
0 ,  according to the numerical solutions. r* = 0.32, A ,  = 7.95. 

u 

FIGURE 7. Vorticity contours: (a )  T = 0;  ( b )  1.0; (c) 1.5. r* = 0.16, A ,  = 11.25. 
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FIGURE 8. Vorticity contours for an elongated vortex in which sheer instability develops prior 
to collapse. rC = 0.24, A ,  = 18, T = 1.01. 

extent of the transformation from the initial to the end state, i.e. the ratio of initial 
to final vortex area and of final to initial value of maximum vorticity should vary 
directly with A,. 

Figure 7 ( a - c )  for the case A, = 11.25, r* = 0.16 illustrate the suggestion made 
above that collapse (impending in figure 7 c )  can be achieved with a smaller value 
of r* provided the value of A, is increased. Figure 7 ( b )  also suggests that the central 
part of the vortex may be subject to a wavy short-scale oscillation, which disappears 
(figure 7 c )  when the core becomes less elongated. This new scale of motion is 
prominent before collapse in cases for which A ,  is even larger (figure 8). In  such cases, 
the mesh size of the finite-difference grid is not fine enough to resolve the motion with 
satisfactory accuracy. But we varied mesh size, hand-plotted the vorticity contours 
directly from the numerical output, estimated wavelength and growth rates from the 
results of 84.1 (which considers this type of instability in much greater detail), and 
noted that the motion is damped out later by the collapse of the layer. All this 
convinces us that these minute features of the dynamic evolution are not due to 
numerical instability of the computation or of the graphical display technique. They 
seem be be genuine evidence of the instability of the strained vortex layer to 
perturbations scaled on its thickness: we encounter here side by side the two types 
of dynamical events that  were queried in $2.2. Section 4 considers this instability 
more accurately and in greater detail. 

3.4. Scaling: a heuristic model 

When r* is small, the vortices appear to stop rotating around their centres before 
the end of the calculation. But their subsequent evolution is sometimes in doubt 
because it seems to follow a different, slower, timescale. We now use physical 
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arguments and a simple model to gain an idea of the times required for tilting and 
for collapsing the vortices, and we derive heuristically a collapse condition. 

We idealize the evolution of the weak or moderately strong vortices by assuming 
that they rotate on a timescale T, which is smaller than the timescale for collapse 
T,, and that for 7 d 7,, their initial tilt or equilibrium angle 8, is moderately small 
(e.g. in). 

3.4.1. Rotation time 

7, is the value of 7 a t  which the velocity of the vortices normal t o  their length and 
due to self-induction temporarily balances the component of the strain velocity in 
the same direction, i.e. 

(3.3) 

Here 8, is the initial angular velocity of a vortex and 8, is the equilibrium angle. The 
rotation time T, = j+ 6-l dI9 is crudely evaluated from the average of the initial value 
19, and the end value 8 = 0, which yields 

(3.4) 

6 = 5 sin 28,. 

7, = t ,  y 25 2. 

The main point is that, if a temporary approximate balance exists between strain and 
self-induction, the time needed to  reach i t  depends only weakly on the circulation. 

3.4.2. Inviscid collapse time 

7, is obtained as follows. We use, as a model for our vortices, the elliptic vortex 
of uniform vorticity discussed by Kirchhoff (e.g. Lamb 1932). The major axis is 
assumed initially coincident with the y-axis. I n  the absence of imposed strain, such 
a vortex has a uniform rotation rate 

r 
8, = 

n(a  + b)2  ’ (3.5) 

where r is its circulation, and a and b are the semimajor and semiminor axes. Thus 
(3.3) becomes approximately for an elongated ellipse? 

217 
sin28, = n(a+b)2 y ’  (3.6) 

Along the major axis, the unbalanced velocity component in the direction of the 
vortex centre is (figure 2b)  

V ,  = B0 s tan 8,, 

or, according to (3.5) and (3.6), 

and the non-dimensional collapse time is 

(3.7) 

t For an exact solution of the problem of the uniformly strained Kirchoff vortex see Neu (1984~). 
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Tc  x 0 . 0 4 ( i + ~ ) * ~ ~ ~ 2 e r * - 2  

For small values of r*, 7, B T,, the collapse time increases inversely with the square 
of the circulation, and according to our model it increases with the thickness of the 
vortex. We have somewhat underestimated the value of 7, since 

(i) the effect of the rest of the row of vortices is such as to decrease the value o f  
us, especially near the vortex tips ; 

(ii) we have not taken viscous diffusion into account. 

3.4.3. A collapse criterion 

Locally, viscous diffusion tends to transport vorticity away from the vortex centres 
while induction tends to advect it towards these centres. A local collapse criterion 
is obtained by equating the two transport rates. According to the self-similar solution 
with 00 

g(y) = 1 w d z ,  
-00 

(T = ( ~ ~ ( 0 )  cos (by) exp ( -P2uvt), 
where ( ~ ~ ( 0 )  is the vortex strength at y = 0 and t = 0. Hence 

a c  a Z g  

at ay2  
- =U-, 

and the viscous flux of strength (T is simply uacr/ay. For our tilted vortex of finite 
strength, a local diffusion-advection balance requires approximately 

ag 
as 

u-+(Tv, = 0, (3.9) 

where s is the direction o f  the vortex major axis and us, the component of velocity 
a.long this axis and towards the vortex centre. If we use the Kirchoff vortex whose 
strength is 

u = uo[l-(g]:, 

and the expression (3.7) for us, we find that (3.9) leads to 

= 1. 
0- 1 

2(yu)i ( 1  + r)2 cos Be (3.10) 

Now 

Thus our local collapse criterion gives the minimum value ( T ~  of u for collapse as 

c,T*A,  1 
---N - 0.13. 
uo cos 8, (1 + 7/)2 

(3.11) 

In  particular, for very elongated initial vortices (AR % l ) ,  (3.11) implies that the value 
of r* required for collapse is quite small, and according to (3.6), 8 x ( 2 4 / ~ )  r* is also 
small, so that for this limiting case the collapsing criterion becomes 

0- - 1 or r * A , - ~ O . 1 3 .  U C  

2(yv)4 - ( T O  

(3.12) 
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FIGURE 9. The collapse predictions of a simple model and the results of the numerical solutions. 

Thus, if r * A R  < 0.13, according to our simple model, diffusion of vorticity domi- 
nates concentration by induction and the strength decreases everywhere along 
the vortex, while, if A ,  > 0.13, only the outer part of the vortex (that for which 
C T / ~ , ,  < 0.13(r*AR)-l is diffused, while the rest is driven inwards, continues to 
rotate, gains in strength and collapses. 

Neu (19843) offers an asymptotic analysis which applies precisely to the case 
r* 4 1 ,  A ,  >> 1 and which yields (3.12) for an arbitrary initial distribution a(y). 

For finite aspect ratios, (3.11), whose accuracy for a single elliptic strength 
distribution is O ( 7 )  only, and which is not properly applicable to other distributions, 
may nevertheless be adapted to our case for which CT = go cos ( 2 7 ~ ~ / h )  by evaluating 
for one case an effective b /a  from the constant-vorticity contours and assigning a 
value of a/h  which yields the tilt angle 8, found in the calculations. We can then 
compare and complement the results of the numerical solutions with model expect- 
ations. This is helpful because the limiting case envisaged in (3.12) is not approachable 
by our numerical solutions for two reasons : 

(i) the thickness of the layer is so small as to  require an excessively fine mesh; 
(ii) the collapse time is so long that computation expenses are prohibitive. The 

opposite case is easily resolved in a reasonable computing time, but, as was already 
remarked, it is also less interesting since i t  offers no sharp boundary between a 
collapsing and a non-collapsing case because the vortex width is initially only some- 
what larger than its thickness. On figure 9 two solid lines are shown. These are 
heuristic model predictions for collapse of two fixed fractions of our vortices: for 
points on the upper line, the fraction of the vortices with C T / C T ~  > 0.3 should collapse. 
On the lower line only the fraction of the vortex for which CT/CT,, > 0.9 should collapse. 
Essentially, then, pairs of values of r* and A ,  that  lie above the upper line yield 
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FIQURE 10. The vorticity contours are approaching the axially symmetric asymptotic state 
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r* = 0.64, A ,  = 4.75, = 360, = 3.0. 

almost complete collapse, pairs that lie below the lower line are cases for which 
collapse does not occur, and pairs in between correspond to partial collapse. The filled 
circles characterize numerical solutions for which substantial collapse was either 
almost complete or well started at the end of the computation. The open circles denote 
cases in which decay was unambiguous, and the partially filled circles represe& cases 
in which collapse was either partial or in doubt. We note that the model predictions 
are consistent with the results of the numerical solutions. The latter also bear out 
qualitatively the model result that the collapse time increases rapidly as r* decreases. 

3.5. The asymptotic state after collapse 

Figure 10 shows the vorticity contours a t  7 = 3.0 when A ,  = 4.73 and r* = 0.64. 
This is a case for which T~ < 7,, so that collapse is almost complete a t  T = 3.0. The 
contours are, perhaps surprisingly, very nearly circular even though the radius of the 
vortex is not small (about +A). Apparently, the spinning vortex only senses a polar 
average of the strain. 

Neu (1984b) has provided another asymptotic analysis for the last stages of the 
collapse in a plane strain by expanding the solution for a single vortex in powers of 
r/v. The analysis shows that the leading term is the time-dependent axially 
symmetric solution for an axially symmetric strain first discussed by Burgers (1948) : 

(3.13a) 

(3.13 b )  

where y is the (constant) axial strain rate. The first-order correction is O(u / r ) .  
Accordingly, the effective inward strain is in fact the polar average of the plane strain, 
i.e. h. 

Note that, in our notation, r / v  = 237cAkr* > 3.3AR, so that, if strained vortices 
collapse, r / u  $ 1. The effect of the rest of the vortex row which is not taken into 
account in Neu's analysis is to impose a strain yv in the (y,z)-plane which can be 
evaluated approximately as 

Iy,i x E r / n z .  
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Then the ratio of the two strains is 

which is less than unity except for very strong vortices. Thus this second source of 
strain, which has a periodic distribution with zero average over a revolution of the 
vortex, is too weak to alter appreciably the asymptotic vorticity distribution which 
should be described accurately by (3.13). 

This means that the intensification of the vorticity by the collapse and the 
corresponding decrease in the cross-sectional area of the vorticity can easily be given. 
For the initial state, r, = 2x-lA&w0, while for the final state I'f = 8d2w0, where w,, is 
the vorticity a t  the centre of the vortices in both cases. Thus the ratio r, of maximum 
vorticity after collapse ( w ~ ) ~  to that before is 

( 3 . 1 4 ~ )  

where A ,  is given by (2 .7) .  For our assumed initial vorticity distribution the fraction 
yf / r i  of the total circulation which participates in the collapse is 

- sin- 
_ f -  r - 2RYc 
ri A '  

where, at y = y c ,  u = uc, the value of u given by (3.11). In practice (see e.g. $5.1 
and figure 22), little vorticity escapes collapse by diffusion, so that rf/ri differs little 
from unity. Thus the vorticity amplification ratio is approximately 

If we use the typical values y z 3U/l  (Part 1 )  and A ,  z A,, z 15Si (Part 2 and Bernal 
1981) then 

(3.14b) 

3.6. The effect of streamwise vorticity on the difSusion of a scalar 

We now discuss the manner in which streamwise vorticity affects the diffusion of a 
scalar. The discussion can readily be extended to the study of chemical reactions for 
which reaction rates are sufficiently fast to be controlled by diffusion. 

We assume that a passive scalar p with fixed diffusivity D has a uniform 
concentration far above the (2, y)-plane and a different uniform concentration far 
below it. The velocity is described by (2 .2a-c) ,  while the difference p between the 
scalar concentration and some fixed value po obeys (2 .2d)  together with the boundary 
conditions 

p(z)+T+Ap as z++oo. 

Plane strain alone, i.e. the velocity u = yx, w = - yz, causes a transition layer to 
be created. Its thickness So is obtained from ( 2 . 6 ~ )  by replacing v by D .  This thickness 
is asymptotically constant €or constant y, i.e. 

while the concentration profile is given by 

p = +Ap erf [(!gc): 73, 

(3.15a) 

(3.15b) 

6 F L M  141 
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where 7 = z/S,. In  Part  1 we defined the mixed volume V,, which in the context 
of our flow model is 

and showed that in two-dimensional flow 

dV, dt = - 2 D j  p = o  V ( g ) - n d s .  

Thus the rate of increase of mixed volume is twice the integral along the contour of 
zero concentration of the flux of normalized concentration across it. 

The extension to our three-dimensional case for which p is independent of x is 

where 6, = Ap/2(ap/an), = o .  The volume considered has length L(t) in the x-direction. 
Substituting (3.15a), we find that asymptotically, for a constant value of y and for 
a volume of unit span and initial length Lo, the rate of increase of the mixed volume 
is, if the layer is only subjected to strain: 

-- dKl - 2 0  6;l Lo exp (yt) .  
dt 

(3.17) 

3.6.1. Streamwise vorticity with weak circulation 

equation for p, to the same order of the small parameter, is simply 
When streamwise vorticity is present, but (2.5) is applicable, the corresponding 

with solution (3.15), so that very weak vortices have no effect on the concentration. 
We have seen that, as long as the product P A ,  remains below a critical value, the 
vorticity pattern is not fundamentally altered, although i t  is rotated alternately 
clockwise and counter-clockwise by finite values of T*. One may wonder under what 
circumstances the associated circulation is able to wind material surfaces around so 
that, in particular, for high values of S,  = v / D ,  the thin diffusion layer might finally 
occupy the same volume as the vorticity, i.e. acquire a thickness comparable to  6. 
This question has been considered by H. King in work unpublished so far. It is 
difficult to treat i t  exactly for an unsteady velocity field. But we note that the decay 
indicated by (2.6) is typically slow since the characteristic decay time in units of yt 
is yhi/4n2v x US/v if y x3U/h,. Thus a quasi-steady approximation appears 
sufficient. Furthermore, i t  can be shown that the decay tends to decrease the rate 
at which a material surface is wound around. Now King finds that, for a steady flow, 

FIGURE 11. The projection ofparticle trajectories onto the (y, 2)-plane. Dots are particles originating 
on top and bottom boundaries at, equal time intervals. After a sufficient time, the projection of 
particles originally on the horizontal material interface z = 0 lie on an asymptote shown as a solid 
curve. In case (a )  (weak circulation), z(y) is single-valued on that curve and there is only one diffusion 
layer across it. In case ( b ) ,  a single Burgers vortex, z(y) is multivalued on the asymptotic curve, 
diffusive layers are stacked around each other and overlap in the centre. The increased diffusion 
rate is primarily related to the resulting increase in the length of the material interface. 
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FIGURE 12. (a) Vorticity contours; (b)  concentration contours. r* = 0.04, A ,  = 11.25, 7 = 1.5. 

one of the necessary conditions for the roll-up of an initially plane material surface 
on which is found a stationary point of the induced velocity is that  in some 
neighbourhood of this point the projection of particle trajectories onto the (y, 2)-plane 
be inward spirals, i.e. 

where O2 = defu*defu. I n  our notation, and for the postulated initial velocity field, 
this is equivalent to 

f * 2 A R  > (8x3 ) - ' .  

If we exclude from consideration vortices that suffer collapse, and use criterion (3.10) 
for the collapse of elongated vortices, this leads to 

A ,  < 4. 

D 4 j 2 - w 2 - 3  y 2 < o ,  

Thus elongated vortices whose circulation is insufficient to  cause collapse are also 
incapable of winding material surfaces around their centres in competition with the 
inward advection of the strain velocity. The interfacial surface is merely distorted 
into an approximately sinusoidal shape with wavelength A and amplitude equal to 
that of the excursions of the vortex tips from the z-axis. This amplitude increases 
as the aspect ratio decreases; but, even for A ,  = 4, our numerical solutions yield, for 
non-collapsing vortices, an amplitude < 0.16 for which the interfacial length < 1.2A. 
Thus, even for thick (non-collapsing) vortices, the maximum possible increase in 
diffusion rate afforded by the presence of the vortices does not exceed 20 % . Note that, 
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under these circumstances, any visualization method which depends on the diffusion 
of a scalar such as spark shadowgraphy or a diffusion-controlled reaction would fail 
to betray the presence of the vortices. 

Figure 11 (a-b) describe the different trajectories of fluid particles when the vortices 
are weak and elongated (a)  and when they are strong and concentrated (b) .  

3.6.2. Results of the numerical simulations 
The initial distribution chosen for p in the numerical solutions of ( 2 . 2 d )  is that given 

by (3.15a, b)  for plane strain alone. As mentioned in $3.6.1 this choice is consistent 
with that of the similarity solution for the initial vorticity distribution. In all cases 
discussed, v / D  = 1 .  

Figure 12 shows contours of concentration and vorticity for vortices that will 
eventually suffer partial collapse (r* = 0.04, A ,  = 11.25, a case which falls between 
the two solid curves on figure 9) a t  a time which is about 7,. The innermost vorticity 
contours already show the early result of focusing due to self-induction (both the 
intensity of w at the centre and the thickness of the layer have increased slightly). 
The concentration-layer profile is still almost totally unaffected by the circulation. 
The contour on which p = 0 is displaced up and down but its thickness and profile 
have practically not changed since 7 = 0. This and all other calculated cases for which 
either the value of T*A, was insufficient to collapse or at  times for which collapse 
had not yet substantially redistributed the vorticity, exhibit the concentration 
contours associated with weak vortices in $3.6.1. 

When most of the vorticity is advected inwards, the history of the Concentration 
gradient layer is radically different. Figure 13 (a-c) describes such a case. Initially, 
r* = 0.1661, A ,  = 11.25, and the collapse time calculated by the model equation 
is 7, = 1.4. For this run the value of y varied with 7 as 

3 
Y = Yo=. 

Thus r* increases as $(3+7) and A,  decreases as [8(3+7)]-:. This variation of y is 
not of great importance, since the initial value of P A ,  is sufficient to cause collapse 
in a short time. It was used to simulate conditions at a stagnation point in a mixing 
layer while it pairs. The y variation also has the advantage of providing a better 
resolution for the calculations because the lengthscale for diffusion increases as y-: 
as the computation proceeds. 

At 7 = 1 the diffusion layer steepens and thickens at the midplane. A t  7 = 1.5, 
when the centres of the vortices have started to shrink and rotate rapidly, the 
concentration profiles start to participate in the vortex circulation, and at  p = 2.5, 
when the vortices have nearly completed their collapse, the concentration layer has 
rolled up into a characteristic mushroom shape. A later stage of the transformation 
can be viewed in figure 14 for a case for which r * A ,  is almost the same as in the 
preceding case, but r* is doubled while A ,  is approximately halved, so that the 
collapse time is shortened by a factor of about 4. It can be noticed that most of the 
area occupied by the round vortices has been so effectively mixed as to yield an 
almost-uniform concentration. Figures 13 and 14 are strikingly similar to photographs 
obtained from laser-induced fluorescence patterns in a water mixing layer by Bernal 
(1981), and they offer support for the suggestion by Bernal that these patterns are 
caused by the presence of (in fact, as we saw, by the collapse of)  streamwise vortices. 
Figure 15 shows the ratio of the mixed volume at  any time to that which would result 
from strain alone for several cases in which y is constant and vortices suffer collapse. 



(b ) 

FIGURE 13(a, 6). For caption see facing page 
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I. 

(C) 

FIGURE 13. Vorticity and concentration contours: (a) 7 = 1.0; (6) 1.5; (c) 2.5. Vorticity-contour 
intervals are 1.0 (a, 6)  and 2.0 (c). r* = 0.166, A ,  = 11.25. 

But the runs were clearly not long enough for the mixing rates to reach an asymptotic 
value. In  93.6.3 we determine how these rates depend on the flow parameters. 

3.6.3 Mixing rate after collapse 
As explained in 93.5, collapsed vortices in planar strain reach in a time of order 

y-l a well-defined structure, that of the axially symmetric Burgers vortex. Under 
many conditions i t  thus becomes possible to analyse the effect of the streamwise 
vortices on the final rate of diffusion of the scalar with the initial conditions of 33.6.2. 
Neu (1984~)  and Karagozian (1982), elaborating on earlier work by Marble (1984), 
have examined the effect of an axially symmetric vortex in an axially symmetric 
strain on the diffusion of a scalar originally distributed uniformly over, say, the top 
half-plane y, z > 0. A material surface that coincides initially with the concentration 
discontinuity a t  z = 0 forms a double spiral around it. Diffusion of the scalar is far 
more rapid across this surface than along it. This allows the above authors to use 
the parabolic approximation discussed in Part  1 .  The analysis leads first to the 
determination of the configuration of the material surface at  any time and of the strain 
along it,  and secondly to a local solution of the diffusion operator for the concentration 
layer which straddles the material surface. Marble and Karagozian view the diffusion 



FIGURE 14. Concentration contours; r* = 0.64, A ,  = 4.73, 7 = 3.0. The corresponding 
vorticity contours are shown on figure 10. 
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FIGURE 15. The ratio of mixed volume to  tha t  from strain alone as a function of time : 
V, r* = 0.16, A ,  = 11.25; 0, 0.32, 7.95; A, 0.32, 15.87; 0, 0.64, 15.87. 
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field as made of two regions - one in which the material surface is loosely folded and 
the diffusion layers are distinct from each other, and the other in which the radial 
distance between two adjacent turns of the spiral is smaller than the diffusion 
thickness of the concentration layer. The latter region they consider fully mixed. 
Neu has verified the soundness of this point of view by providing an analysis of the 
mixing zone wherein the diffusion layers interfere with each other. He is thus able to 
provide an explicit estimate for the additional rate of creation of mixed volume, 
free of undetermined constants. When the material interface has reached an asymp- 
totically stationary trace in the (y, 2)-plane, which requires a time of order y-l, that 
estimate is 

3 = 1 . 5 0 ~  r% eyt (3.18) 

for a unit initial length in the x-direction. Since for the strained diffusion layer of 
span $A, in the absence of vorticity, the rate is 

dt 

the ratio of mixing rates is 

or in terms of our parameters, 

(3.19b) 

Because the region that contributes most to the mixing extends beyond the vortex 
radius, i t  is necessary, in order to  make use of the above results to examine the effect 
of plane strain on the evolution of the material interface, given that the vorticity 
is distributed in a row of Burgers vortices of equal strength and alternating 
circulation. H. King (unpublished work) has provided the details of this analysis. In  
regions that for collapsed vortices satisfy the condition 

where r is the radius from the vortex centre to a point on the material interface and 
6 is the vortex radius, the equation for the half of the material interface initially found 
on z = 0, y > 0 is 

8-;sin28 = __ 2nr2 r [ ~ - e x p ( - g ) ] - & ~ ~ ( - z ) ,  

where 
co -u e 

Ei( -u) = - j u  ,du, 

and 8 is measured from the positive y-axis. 
For large values of 8 the term sin 28 can be ignored in the above expression. The 

effect of the other vortices can also be shown to be small under the same circumstances. 
The component of strain along the interface and in the (y,z)-plane, once averaged 
over 8, is also found to be the same as in the axially symmetric case. When the radius 
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a t  which diffusive layers begin to overlap is greater than the radius containing 

(3.20) 

the rate of increase of mixed volume is that given by (3.18) and the ratio of mixing 
rates that given by (3.19). Condition (3.20) is easily satisfied for gases and generally 
satisfied a t  high Reynolds numbers. In  figure 14, where the transient phase for mixing 
is still incomplete, the region of uniform concentration centred on the vortex is 
already larger than the latter. 

We note from (3.19) that the increase in mixing rate due to the collapse of the 
vortices is only proportional to the power of the Schmidt or Prandtl number. 

4. The instability of a strained uniform vortex layer 
We now return to the first question raised in $2.2. To isolate the problem of the 

spontaneous instability of elongated vortices from that of the bulk redistribution of 
their vorticity, we assume that these vortices have infinite aspect ratio, i.e. that their 
circulation cro = 2V0 per unit length is initially uniform. They are then described by 
(2.6) with /3 = 0, a solution to the full equations of motion which was probably first 
given by Burgers (1948). 

The discussion of $ 3 leads us to suspect that such layers are unstable and that Neu’s 
criterion (3.12) might apply. Neu has in fact dealt with this problem in the same paper 
(Neu 1983b) in the context of long waves. However, we recall that the time required 
for collapse, which can be thought of in this context as an inverse growth rate for 
a perturbation, decreases as the inverse square of r*. This leads us to guess that the 
relevant wavelengths of instability are not long next to the layer thickness and these 
are beyond the scope of Neu’s asymptotic theory. 

4.1. Instability of injinitesimal perturbations 

We first formulate the linear or infinitesimal-perturbation version of the stability 
problem. Equations (2.2a-c) are linearized around the steady solution of the Burgers 
vortex layer after they are non-dimensionalized by using S = (nv/2y); as the unit of 
length and V, = 2po as the unit of velocity. We then assume that the perturbation 
velocities are two-dimensional. Their stream function 4 is written 

t+b = $(z)expia(y-ct), 

in terms of which the linearized vorticity equation becomes 

d 
dz 

( V - c )  $”-a2$ - $ V” = - 2a2$”+ a2# +- ($*-a2$)] , (4.1) 

where 

We note that the left-hand side of (4.1) is formally identical with the inviscid 
approximation to the Orr-Sommerfeld equation, so that as aR-too we expect its 
solution to tend to that for the unstrained layer for high Reynolds numbers. This 
also follows from 
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FIGURE 16. The eigenvalues of the initial instability of the Burgers vortex sheet: growth rate 
ac, vs. wavenumber a for six Reynolds numbers. 

The boundary conditions used in the solution of (4.1) are 

$+exp(faz) ,  $"-a2$+0 as z - t k 0 3 .  

These ensure asymptotically irrotational and bounded solutions. An efficient elabora- 
tion of the Thomas algorithm was used to find the eigenvalues and to generate 
eigenfunctions. Details and in particular the eigenvalues of the lowest mode for a 
range of values of the two parameters a and R are given in Lin (1981). Figure 16 
summarizes these results in terms of the growth rate aci, where ci = -ic (since, in the 
present problem, the real part ofc vanishes). A comparison of these values with those 
appropriate to an unstrained layer reveals that  the maximum growth rate is 
comparable, though it occurs at a somewhat higher wavenumber in the strained than 
in the unstrained case. A typical value of a for the fastest-growing wave is a = 0.4. 

It is of interest to compare these results with those of Neu (19843), which apply 
in the limit aR+O. His inviscid dispersion relation is to leading order 

where the equivalence between his notation and ours is given by 

The only range of values for which agreement between the two calculations might 
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FIGURE 17. The growth rate for long waves: a comparison of Neu’s inviscid asymptotic theory with 
the eigenvalues for the viscous layer of finite thickness. 

be expected is R-t m, ai.0 in such a way that aR+O. I n  fact (figure 17),  for a given 
small value of a, the agreement improves slowly as R+ 00,  even though aR K ku,,/y 
becomes large. This suggests that  Neu’s linearized dispersion relation above requires 
only k(v /y )?  < 1 ,  rather than both (ku,,/y)$ and u,,/(vy): 6 1 .  

4.2.  The nonlinear evolution of the instability 

We now use numerical finite-difference solutions to follow the development of the 
instability beyond the infinitesimal stage. Equations (4.2) are solved as in $ 3  and the 
boundary conditions are the same, with the exception that 

V + * 1  as z + + m .  

The numerical scheme is almost the same as that discussed in $3.2 (see Lin 1981). 
For initial conditions, we use the superposition of the error-function profile and 
eigenfunctions of (4 .1)  with a small amplitude. The calculation of the growth rate 
of the perturbation energy over the first few time steps serves as a check of the 
accuracy of the numerical procedure. This growth rate is found to agree with the 
predictions of linear theory with a maximum error less than 2 yo. 

Two cases were run for which the initial wavenumber a = k8 is approximately that 
for maximum initial growth according to figure 15. They correspond to  R = 50 and 
R = 20. 

Figures 18(a-c) show the evolution of the vorticity contours for 7 = 1.0, 2.0 and 
4.0 for R = 50. The initial evolution is quite similar to that of the unstrained case 
a t  the same Reynolds number and corresponding times. This is expected from the 
results of the linear analysis. But a t  r = 4.0 we notice two consequences of the 
presence of axial strain : the first is that  the maximum value of the vorticity has risen 
a t  the centre (from 14.8 at r = 0 to about 20 a t  7 = 4 ) .  The second is that  the vorticity 
has completely left the braids. The evolution of the rolled-up vortex is far from over 
at the end of the calculation. The asymptotic state for large values of 7 is discussed 
in 94.3. 

For R = 20 (figures 19a-c), roll-up is noticeably slower, but the intensification and 
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FIQURE 18. Instability of the Burgers vortex sheet according to a nonlinear numerical solution with 
one initial eigenfunction. Vorticity contours; R = 50, a = 0.40: (a) 7 = 1.0; ( b )  2.0; (c) 4.0. 

shrinking of the vortex by the imposed strain is faster. At 7 = 5.0 the maximum 
vorticity already exceeds the value 30. 

I n  the next two cases the initial conditions are the sum of wavenumber a1 and its 
subharmonic with wavenumber a2 = fal. The amplitude of the subharmonic is half 
that of the fundamental. The phase 4 (see part 1, $4.3.2)  is 0. The wavelength used 
as lengthscale is A, = 2 7 ~ S a - ~ .  The gridlength is 2h non-dimensional units. 

For R = 20 (figure 2 0 a d )  the roll-up occurs as in the previous case a t  r = 2.  The 
vortices have only rotated around each other by a very small angle and their spacing 
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FIGURE 19. Instability of the Burgers vortex sheet (continued). One initial eigenfunction; R = 20, 
a = 0.425. Vorticity contours: (a )  T = 1.0; ( b )  2.0; ( c )  4.0. 

has slightly decreased. At T = 3 the rotation is apparent and the vortices are 
approaching each other more rapidly. At 7 = 4 they have coalesced and shrunk. The 
concentration contours are shown on figure 2 0 ( d )  for T = 3.0 ( v / D  = 1). The figure 
shows that mixing is complete within the individual vortices before pairing and that 
the strong concentration gradients where mixing takes place are external to  the 
intense pairing vortices (see discussion of $3.6.3). For R = 5 figure 21, which gives 
the vorticity contours a t  T = 4.0, shows that the vortices have almost reached their 
equilibrium thickness but that  they are distorted. The effect of the subharmonic is 
almost imperceptible. At T = 8 the situation is not materially altered: the two 
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vortices have not moved much closer together; they still lie on the y-axis and their 
maximum vorticity has nearly reached a constant value, approximately three times 
the initial maximum value. Thus in this case pairing seems to be in doubt. 

4.3. Discussion 
After the perturbations have grown beyond the linear range, the vorticity, which was 
initially uniform along y, tends to be concentrated into finite vortices. The flow is 
thus reminiscent of that  discussed in $3.  Yet there are important differences which 
lead to  a qualitatively different outcome. The aspect ratio defined in $ 3  is now 
inversely proportional to a. Since the value of this parameter tends to be narrowly 
confined by the selectivity of the maximum initial growth rate, i t  can for our purposes 
be assumed fixed. The circulation of all neighbouring vortices now has the same sign, 
where it had alternating signs in $3. A consequence of the present arrangement is 
that  an alternate perturbation of the height of the vortices (which may be caused 
by a first subharmonic) now leads to  instability and pairing. 

It is helpful to relate the parameters used in the discussion of the previous section 
with those that arise naturally in the present context. If we retain the definition of 
aspect ratio as 

A, = h/4S, 

and note that if cro = 2 V, is the uniform strength of the initial Burgers sheet then 
I', = a,h is the circulation for each vortex, then 

R = (an): N = nr;  A,, aR = + n 2 c ,  a = k A - l ,  2 R  

where N = c ~ ~ / Z ( v y ) ; .  
It should also be noted that the non-dimensional time used in the calculations is 

the one that occurs naturally in the study of linear stability, i.e. 7 = t Vo/A. This time 
is related to t y ,  the non-dimensional time in our study of the collapse of vortices of 
finite span in $3  by 

(4.3) 
VOt - 

~ = 7 = ( r 2 a R ) y t .  
4 

4.3.1. Roll-up 

I n  roll-up, first the interaction between the vorticity and the strain associated with 
that vorticity alters the strain-diffusion balance implied in the base state by 
redistributing the vorticity of a layer into thicker and separated vortices. Then the 
external strain forces a strain-diffusion balance for the new configuration of vorticity 
by stretching the vortices, which become more intense and acquire a smaller 
cross-section. These two physical processes are not independent : the imposed strain 
tends to inhibit roll-up, and, after roll-up occurs, the strain created by the row of 
vortices may be a major, though decreasing, perturbation of the imposed plane strain. 

The two stages of the evolution are most distinct and therefore easier to identify 
when the imposed strain is comparatively weak, i.e. when R is large, because their 
timescales are then quite different: the roll-up timescale is simply A/Vo as in the 
unstretched case, while the stretching timescale is l / y ,  so that the ratio of the time 
required to achieve a final strain-diffusion balance (i.e. stretching time) to the time 
required to upset the initial one (roll-up time) is, according to (3.3), about I K - ~ ~ R .  
On the other hand, when the Reynolds number of the initial vorticity layer 
approaches the critical value for instability (which has not been determined precisely 
but which is bounded below by (in)$ and which, according to figure 16, is substantially 
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less than 5 ) ,  roll-up and stretching proceed apace and their common timescale is about 

The flows shown in figures 18 and 19 at Reynolds numbers of 50 and 20 have not 
reached their asymptotic state by the end of the calculation. For larger times 
stretching takes place while the rolled-up vortices remain under each other's strong 
influence - thus the strain in the ( y ,  %)-plane caused by mutual induction is still large 
compared with the imposed strain in the ( z ,  2)-plane. To gain an idea of the relative 
intensity of these two types of strain a t  the vortex centres, we assume that the other 
vortices are concentrated a t  points. We thus estimate 

1 l Y .  

yv = x1/',/% 

or in terms of the instability parameters 

yv = aR/2n, 

where yv is the strain caused by the row of vortices. This strain has major axes along 
45" lines a t  the centre of each vortex. We see that for large values of R each vortex 
will remain subjected to a large strain in the (y, 2)-plane, negative along one direction 
inclined to the y-axis and positive along another, while i t  is also being stretched along 
its own axis. We may therefore wonder whether the asymptotic state is the same as 
that discussed in 53. Here, we are helped by the fact that, if we omit viscous diffusion, 
the situation is substantially that treated exactly by Neu ( 1 9 8 4 ~ ) .  Our high- 
Reynolds-number examples correspond to the case of three-dimensional strain, for 
which, in his notation, (y -y ' ) /w  < 1. Neu shows that if the original strain in our 
(y,z)-plane is not such as to  extrude the vortices into ever-lengthening filaments 
(which is excluded by the conditions that lead to the roll-up), the vortices slowly 
evolve so that their decreasing cross-section tends to  a fixed shape which differs only 
slightly from a circular one. Diffusion will, of course, stop the vortex cross-section 
from shrinking when its dimension is about (vly):. The ratio rb of maximum vorticity 
after roll-up and stretching are completed to that before roll-up is essentially fixed 
since the length of the vorticity layer which rolls up is closely proportional to its 
thickness (i.e. the value of a for the largest growth rate is almost independent of 
Reynolds number and x 0.4, see figure 16). Thus 

r: x n(22 x 4)-l x 4. 

to the Burgers axially symmetric vortex as i t  was for the collapse described in 93. 

4.3.2. Pairing 

When a row of unstrained vortices with identical circulation is perturbed so that 
they are displaced alternately from their initial location, neighbouring vortices 
rotate around each other. They will also coalesce if the ratio of their radius to their 
spacing is sufficiently large. I n  that case, the field induced by the vortices themselves 
gives rise both t o  a component of velocity that causes a rotation of the two vortices 
around their common centre and to  an inward component along the line of centres. 

If strain is imposed as in our model, the vector sum of the velocity induced by one 
displaced vortex on the other and of the inward strain velocity includes a component 
in the direction of the centre of symmetry for the two vortices. As a result such 
vortices should approach each other and collide or coalesce, no matter how small the 
ratio of their radius to their initial spacing, and provided only that they are initially 
perturbed in alternating fashion. 

To summarize, for any Reynolds number the asymptotic state is an approximation 
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FIGURE 21. Instability (continued). Two initial eigenfunctions: 
El = 5, a, = 0.375, cc2 = 0.1875, T = 4.0. 

A simple calculation suitable for highly concentrated vortices shows that the initial 
relative collision velocity is 2rr A,/zh2,  so that the coalescence time is of order 

7" = i(A/A,),  

where A,  is the amplitude of the normal displacement of the vortices. In  this 
expression, if A,  is the result of a naturally occurring subharmonic perturbation 
(instead of being imposed) its value will depend inversely on the strain rate y.  Thus 
we should expect that  the coalescence time would increase as R decreases. This is 
borne out by the calculations for R = 50 and R = 20. For the case R = 5 the 
numerical solutions indicate that the subharmonic perturbation is so small that its 
effect is practically undetectable. According to figure 17, the initial growth rate of 
this perturbation (with 01 = 0.1875) is positive, though small. But by the time the 
sheet has rolled up into the concentrated vortices of figure 21 the numerical evidence 
is that the subharmonic has decayed to negligible amplitude. The reason for this decay 
is not yet clear. 

Whenever pairing occurs, the asymptotic value of the maximum vorticity should 
nearly double after the new equilibrium is reached between stretching and diffusion. 

5. Stretched vortices in the mixing layer 
Part 1 showed that the evolution of a two-dimensional mixing layer consists in the 

redistribution of the original layer vorticity into spanwise vortices of increasing 
circulation and spacing. These cause a two-dimensional strain field whose lengthscale 
also increases in time (for the T-layer) or downstream (for the Slayer).  Part  2 showed 
that, while a mixing layer readily acquires three-dimensional components of motion 
and vorticity components in planes perpendicular to  the span, the basic features of 
the two-dimensional flow studied in Part  1 survive with little change so that the 
largest-scale strain is found in the (x, 2)-plane. 

As was remarked in 8 1 ,  the model of the environment that we have chosen to study 
the evolution of streamwise vorticity selectively focuses on one of these features, the 
clear tendency of the base flow to stretch the streamwise vortices on the average. The 
focus is achieved by ignoring several other interactions between streamwise and 
spanwise vorticity. Thus when streamwise vortices are rolled into large spanwise 
vortex structures, the principal axis of positive strain of the primary flow does not 
in general coincide with the direction of the streamwise vorticity, so that this vector 
tends to be rotated and in the process probably experiences temporarily negative 
strain along i t .  I n  addition, concentrated streamwise vortices are sure to alter the 
local distribution of spanwise vorticity. We are not prepared to evaluate here the 



173 The mixing layer: deterministic models of a turbulent .flow. Part 3 

U 

4 -  

I 1 I * 
a C b 

x - ti7 
A; A; Roll-up 1st pairing 2nd pairing 

(a ) 

7 
~~ 

a C b 
x - ti7 
A; A; Roll-up 1st pairing 2nd pairing 

(a ) 

a b C 

(b 1 

FIGURE 22. Sketch of the streamwise variation of the strain y (a)  and of strain-controlled 
diffusion-layer thickness 6 ( b )  in the mixing layer near a surviving stagnation point A between 
spanwise vortices. 

consequences of these complications. But we wish to infer from the results of the model 
study the probable behaviour of streamwise vorticity in those simpler parts of the 
mixing layer where the model is relevant. 

The evolution of strain along an initial material interface near a surviving 
stagnation point A as i t  is followed downstream, starting with the origin of the layer, 
is sketched on figure 22 (a ) .  The strain has a low initial value and rises to approximately 
3 a t  the end of the roll-up (yt x 2 ,  point a). It then decreases as a result of pairing, 
each pairing decreasing i t  by a factor of 2.  Correspondingly, the thickness of the 
vorticity layer first decreases rapidly. One finds for instance that if the initial 
wavelength of the two-dimensional instability that leads to  the roll-up of spanwise 
vorticity is (h,)O = 156,, where Si is the initial-layer thickness, when y x 3U/(h,)O (i.e. 
towards the end of roll-up) then 

The evolution of 6 is sketched on figure 2 2 ( b ) .  Generally 6 increases by a factor of 
2; through each successive pairing. The aspect ratio of streamwise vortices, i.e. 
(vortex spacing)/26, is determined by the ratio (h,)o/h, (which in the terminology of 
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FIGURE 23. The variation of the primary collapse-controlling parameter T*AR as a function of 
spanwise wavenumber p (from the calculations of Par t  2). 

Part 2 is p)  and by ( 2 . 6 ~ ) .  Thus we find that a t  the end of roll-up, using approxima- 
tion (5.1), 

A ,  = 1.34p-1 (?)' 
For a fixed value of /I, A ,  would decrease by a factor of 2: as a result of pairing. 

5.1. The occurrence of the collapse of streamwise vortices in the mixing layer 

We wish to predict approximately how far downstream streamwise vortices in the 
neighbourhood of stagnation points will collapse (and be visible by concentration- 
gradient-sensitive optical techniques). We thus need to evaluate both where the 
conditions for collapse are met and how much later collapse is completed. 

We recall from (3.12) that  an approximate criterion for substantially complete 
collapse with CT,/CT~ = 0.3 is 

If we define rI, = r (U(AJ0)- l  and yI = y(A,), U-l, from ( 5 . 2 ) ,  we find that 

T*A, > 0.43. 

US. 
T*A, = 1 .34pyr1 (+)' rII (5.3) 

a t  the end of the roll-up. Each pairing increases this value roughly by a factor of 2:. 
In  (5.3) we assign the typical value yI = 3 from Part 1 .  Now typical values of the 
circulation around streamwise vortices are not yet known dependably. I n  particular, 
the influence of initial conditions and of initial Reynolds number are still matters of 
speculation. Two estimates of r near the centre of the braids (i.e. about halfway 
between spanwise vortices) are available. The first is the direct result of the numerical 
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calculations reported in Part 2. It gives I',, a t  a fixed value of initial Reynolds number 
Rei = 50 for a range of values of spanwise spacing p. Since in those calculations T 
depends almost linearly on the amplitude of the assumed initial perturbations, a 
choice of initial amplitude was made to yield a value of spanwise velocity amplitude 
typical of experiments. The resulting values of I-,, will next be used to evaluate T*AR 
from (5.3). The second estimate of I' is given by Jimenez (1983). It is an inference 
from experimental observations which suggests substantially higher values of 
circulation. It will not be used, but it would lead to  the prediction of earlier collapse. 

Figure 23 is the resulting plot of T*AR as a function of p for Re, = UcYi/v = 50. 
The approximate collapse condition is shown as a horizontal line. We see that for 
/3 > 1.0 the condition is met a t  the end of roll-up and easily exceeded a t  the end of 
the first pairing. At higher values of initial Reynolds number, according to  (3.3), the 
value of T*A, would be correspondingly higher. We note that collapse is to be 
expected even a t  very modest initial Reynolds numbers. The assumed circulation 
associated with the streamwise vortices amounts to about & that of the spanwise 
vortices creating the strain a t  roll-up. 

The time required for collapse is approximated, from (3.8), as 

which is also 
Yt, = 7c x o.o4r*-2, 

T c  x 0.047; r E 2 p - 4 .  

It is thus nearly independent of initial layer Reynolds nunber, but much smaller for 
short spanwise wavelengths than for long ones. Using the same values of TII, we find 
that a t  the end of the roll-up the collapse time is about 10 units for p = 1.25 and 
p = 1.59, and much longer for /3 = 0.5. At the end of first pairing this time has 
dropped to about 1 unit for ,8 = 1.25 and about 20 units for p = 0.5. Since the time 
required for a second pairing is about 5 units, we conclude that collapse is not likely 
to be achieved a t  roll-up, but should be completed shortly after a first pairing for 
spanwise wavelengths equal to or somewhat shorter than the streamwise wavelength 
of the initial instability. 

5.2. The breakdown of a vortex by local shear instability 
When the counter-rotating vortices have a sufficiently large aspect ratio, i t  is 
possible, as was noted in connection with figures 7 and 8, for the shear instability 
of these flattened vortices to  give rise to  smaller vortices whose spacing is about 156, 
while the vortex begins to collapse. We found in 94.3 that for sufficiently high values 
of Reynolds number the streamwise vorticity roll-up time associated with this 
instability is about 15n/R, while according to 93.4, for highly elongated vortices, the 
collapse time is roughly 0.041'*-2. The ratio of roll-up time T~ to collapse time is then 
found t o  be 7R/7, x 190r*Ai1. 

This ratio increases with the strength of the vortices, but decreases as the aspect 
ratio (i.e. the initial layer Reynolds number) is raised. For the case of figure 7, 
~ ~ / 7 ,  x 1.0, while for that of figure 8, 7R/7, = 0.7. In general, since a typical value 
of 7R is x 20( USi/v)-:, the small-scale spanwise segregation of streamwise vorticity 
of the same sign should be observed early in the development of the layer (i.e. 
simultaneously with the original roll-up of the spanwise vorticity) for an initial 
Reynolds number Rei of about 400 or more. In  view of (5.1) these smaller vortices 
would have a temporary spacing of about 40( USi/u) - f  Si, and they would probably 
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appear in plan views of mixing layers by causing streamwise streaks of spanwise 
concentration gradients with half this spacing. 

5.3. Collapse and the mixing transition 

Konrad (1977) and Breidenthal (1981) have measured the rate of generation of 
reaction product caused in a mixing layer by a diffusion-limited reaction between 
substances segregated upstream of the layer origin. Breidenthal’s experiment was in 
water, Konrad’s in gas mixtures, so tha t  the Schmidt number differed by about lo3. 
They both observed a rapid increase in the rate of reaction around a streamwise 
station whose location varied primarily with the initial layer Reynolds number. This 
increase they called the mixing transition. 

I n  view of the discussion of $3.6, i t  is tempting to  associate this phenomenon with 
the occurrence of the collapse of streamwise vortices. Indeed Breidenthal’s 
observations of the location of this mixing transition seem to  be consistent with the 
predictions of $5.1. The ratio of the rate of generation of reaction product after 
collapse to  tha t  before should be the same at the ratio of mixing rates (3.19), so tha t  
we would expect tha t  ratio to  depend on (u/D): ,  i.e. t o  differ by a factor of about 
3 in experiments involving water and gases. According to  Breidenthal, they differ by 
a factor of almost 6. Thus the collapse of streamwise vorticity according to  theory 
and the mixing transition according to  experiments occur at about the same stage 
of the mixing-layer evolution and both result in a striking loss in the ability of the 
molecular diffusion coefficient t o  control mixing rates. But ,  according to  the 
experiments, this loss is even more complete than if i t  were due only to  collapse, as 
though additional small scales of motion appear soon afterwards and cause even more 
complete mixing. However, the discrepancy noted above may not be meaningful, 
because the methods used to  measure concentration in the two experiments were very 
different and possibly subject t80 experimental errors. I n  any case, i t  seems probable 
that  a t  least the outset of the mixing transition is caused by the collapse or 
concentration of streamwise vortices. 

6. Conclusions 
The effect of two-dimensional spatially uniform strain on vorticity aligned with 

the positive strain direction is both striking and simple: the strain tends to  generate 
vorticity layers with thicknesq ( v / y ) i ,  but wherever the strength of such layers is 
substantially larger than 2(vy) i  its vorticity is caused by self-induction to  be 
concentrated into well-segregated round vortices whose radius is asymptotically also 
( v / y ) i .  In  a layer where the sign of the vorticity alternates (in the direction along which 
strain is absent), each portion of the layer that  contains vorticity of a given sign 
evcntually cwntribut,es that  vorticity to a single vortex. This may occur in a single 
stage if the initial layer thickness is not excessively small next t o  the spanwise extent 
ofvorticity of a given sign or, otherwise, in a succession of stages involving local roll-up 
and pairing. The transformation from a continuous 1ayr:r to isolated vortices of the 
same thickness causes vorticity t>o be intensified by a factor which is proportional 
t,o v - i .  The structure of the vortices becomes closely tha t  of an  axiallj T b ’y mmetric 
vortex in an axially symmetric strain. The time required for completing the t’ransition 
between a strained layer and a row of vortices is approximately proportional t o  the 
first power of t h c  strain. t>he fourth poww of the width of the fragment of the layer 
collapsing as  a uhole and i nvcrscly proportional to the second powcr of its circulation. 
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The effect of the vorticity on the diffusion of  a scalar is slight until the layer has 
collapsed, but substantial afterwards. It can be calculated after collapse for any 
Schmidt and Reynolds numbers. 

I n  a mixing layer the strained vortices have a radius whose ratio to the average 
dimension d of the layer (say, the diameter of the spanwise vortices) is of the order 
of (dU/w) - i .  These structures thus have a size associated with the Taylor microscale. 
The study presented here and the work of Neu (1984a, b )  suggest that  these compact 
and sturdy vortices are dynamically far more plausible structures on that scale than 
strained layers, whose existence a t  high Reynolds numbers seems doomed to rapid 
collapse in plane strain. 

Our model environment for streamwise vorticity excludes several important and 
realistic features found in a real mixing layer. Among thcse are the existence oflarge 
oscillations in the component of strain along the vorticity and the presence of 
extensive, though generally more dilute, spanwise vorticity with which the streamwise 
vortices interact,. 

This work has been supported by the U.S. Office of Naval Research under Contract 
N.R. 062-665. 

R E F  E R E  NC E S 

BRACHET, M. E. & ORSZAG, 8. 1982 Secondary instability of free shear layer flows. Submitted to  
J .  Fluid Mech. 

BERNAL, L. P. 1981 The coherent structure in turbulent mixing layers. 11. Secondary streamwise 
vortex structure. Ph.D. thesis, Calif. Inst. Tech. 

RREIDENTHAL, R. 1981 Structure in turbulent mixing layers and wakes using a chemical reaction. 
J .  Fluid Mech. 109. 1. 

BURQERS, J. M. 1948 A mathematical model illustrating the theory of turbulence. Adv. AppZ. Mech. 
1,  171.  

CAIN, A. R. ,  REYNOLDS, W. C. & FERZIGER, J .  H. 1981 A three-dimensional simulation of 
transition and early turbulence in a time-developing mixing layer. Stanford Univ. Ilept Mech. 
Engng Rep. TF-14. 

CORCOS, G. M. & LIN, S. J. 1984 The mixing layer: deterministic models of a turbulent flow. 
Part 2 .  The origin of the three-dimensional motion. J .  FEuid Mech. 139, 67. 

CORCOS, G. M. &SHERMAN, F. 8. 1984 The mixing layer: deterministic models of a turbulent flow. 
Par t  1 .  Introduction and the two-dimensional flow. J .  Fluid Mech. 139, 29. 

COUPT, B. & LEONARD, A .  1980 Mixing layer simulation by an improved three-dimensional 
vortex-in-cell algorithm. In Proc. 7th Intl CvrLf. on Numerical Methods in Fluid Dynamics, 
Stanford- A mes . 

JIMENEZ, J. 1983 A spanwise structure in the plane shear layer. J .  Fluid Me&. 132, 31S336. 
KARAGOZIAN, A. 1982 An analytical study of diffusion flames in vortex structures. Ph.1). thesis, 

Calif, Inst. Tech. Ki rman Lab. of Fluid Mech. and J e t  Propulsion. 
KONRAD, D. H. 1977 An experimental investigation of mixing in two-dimensional turbulent shear 

flows with applications t o  diffusion-limited chemical reactions. Ph.D. thesis. Calif. Inst. Tech. 
(also Project Squid Tech. Rep. CIT-8-PL1, Uec. 1976). 

LAMB, H. 1932 Hydrodynamics, p. 242. Dover. 
LIN, S. J. 1981 The evolution of streamwise vorticity in the free shear layer. Ph.D. thesis, Univ. 

MARBLE, F. E. 1984 Growth o f a  diffusion flame in the field of a vortex. In Advances in Avrospace 

NEW, J .  1984a The dynamics of a columnar vortex in an imposed strain. Submitted to  I'hys. Fluids. 
NEW, J. 19846 The dynamics of stretched vortices. J .  F h i d  Mrch. (to be published). 
NEU, J. 1984~  The evolution ofdiffusion flames convected by vortices. Submitted to  J .  Fluid Mech. 

Calif., Berkeley, Mech. Engng Dept (also Rep. ONR Contract NR-062-665. 1981). 

Science (ed. C.  Casci). Plenum. 



178 

RILEY, J. J. & METCALFE, R. W. 1980 Direct numerical simulation of a perturbed turbulent 

PATNAIK, P. C.,  SHERMAN, F. S. & CORCOS, G. M. 1976 A numerical solution ofKelvin-Helmholtz 

SHERMAN, F. S. 1979 User’s guide to program KHINT. liniv. CuZif. Rep.,  Dept Mech. Engng. 

S .  J .  Lin and G. M .  Corcos 

mixing layer. A I A A  18th Aerospace Sci. Meeting, Pasadena: Reprint A I A A  079-0270, 

waves of finite amplitude. J .  Fluid Mech. 73 ,  215. 


